Use of real-time PCR in insect nematology by Ganpati Jagdale

Entomopathogenic nematodes and RT-PCR- nematodeinformation

Read following papers on the real-time PCR and Insect Nematology

Bae, S. and Kim, Y. 2003.   Lysozyme of the beet armyworm, Spodoptera exigua: activity induction and cDNA structure. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology 135: 511-519.

Campos-Herrera R, El-Borai F.E., Stuart R.J., Graham J.H., DuncanL.W. 2011. Entomopathogenic nematodes, phoretic Paenibacillus spp., and the use of real time quantitative PCR to explore soil food webs inFlorida citrus groves. Journal Invertebrate Pathology 108:30-9.

Campos-Herrera, R., Johnson, E. G, El-Borai, F. E., Stuart, R. J., Graham, J. H. and Duncan, L. W.2011. Long-term stability of entomopathogenic nematode spatial patterns in soil as measured by sentinel insects and real-time PCR. Annals of Applied Biology 158: 55-68.

Ciche, T.A. and Sternberg, P.W. 2007.  Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts. BMC Developmental Biology 7, Article Number: 101.

Ji, D.J. and Kim, Y. 2004.   An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. Journal of Insect Physiology 50: 489-496.

Park, D., Ciezki, K., van der Hoeven, R., Singh, S., Reimer, D., Bode, H.B. and Forst, S. 2009. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila. Molecular Microbiology 73: 938-949.

Pathak, E., El-Borai, F.E., Campos-Herrera, R., Johnson, E.G., Stuart, R.J., Graham, J.H. and Duncan, L.W. 2012.  Use of real-time PCR to discriminate parasitic and saprophagous behaviour by nematophagous fungi.  Fungal Biology 116: 563-573.

Shrestha, Y.K. and Lee, K.Y. 2012. Oral toxicity of Photorhabdus culture media on gene expression of the adult sweetpotato whitefly, Bemisia tabaci. Journal of Invertebrate Pathology 109: 91-96.

Son, Y. and Kim, Y. 2011.  Immunosuppression induced by entomopathogens is rescued by addition of apolipophorin III in the diamondback moth, Plutella xylostella. Journal of Invertebrate Pathology 106: 217-222.

Song, C.J., Seo, S., Shrestha, S. and Kim, Y.  2011. Bacterial Metabolites of an Entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. Journal of Microbiology and Biotechnology 21: 317-322.

Torr, P., Spiridonov, S.E., Heritage, S. and Wilson, M.J. 2007. Habitat associations of two entomopathogenic nematodes: a quantitative study using real-time quantitative polymerase chain reactions. Journal of Animal Ecology 76: 238-245.

We know now where infective juveniles store their symbiotic bacteria by Ganpati Jagdale

It has been always reported that the infective juveniles of Steinernema spp. carry their symbiotic bacteria, Xenorhabdus spp. in a special intestinal vesicle (Bird and Akhurst, 1983) whereas the infective juveniles of Heterorhabdits spp. carry their symbiotic bacteria, Photorhabdus spp. in the anterior part of the intestine (Boemare et al., 1996) and release them in the body cavity of their insect hosts.

Read More

Why scavengers avoid eating beneficial nematode infected insect cadavers by Ganpati Jagdale

As we know that the entomopathogenic (beneficial) nematode infected insect cadavers are like pouches that are filled with different developing stages of entomopathogenic nematodes such as Steinernema spp or Heterorhabditis spp and soup of their multiplying symbiotic bacteria in the genera Xenorhabdus or Photorhabdus, respectively. 

Read More

Steinernema feltiae attracts to cues from slugs by Ganpati Jagdale

Scavenging and entomopathogenic nematodes

It has been demonstrated that an entomopathogenic nematode, Steinernema feltiae that only infect and kill their insect host but it can also be attracted to the cues released from the slug cadavers suggesting that entomopathogenic nematodes can feed on carcasses of other organisms (Nermut et al., 2012).

Read following literature on scavenging behavior and entomopathogenic nematodes

Baur, M.E., Kaya, H.K. and Strong, D.R. 1998. Foraging ants as scavengers on entomopathogenic nematode-killed insects. Biological Control 12: 231-236.

Foltan, P. and Puza, V. 2009. To complete their life cycle, pathogenic nematode-bacteria complexes deter scavengers from feeding on their host cadaver.  Behavioural Processes 80: 76-79.

Nermut, J., Puza, V. and Mracek, Z. 2012.  The response of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae) and Steinernema feltiae (Nematoda: Steinernematidae) to different host-associated cues. Biological Control 61: 201-206.

Puza, V. and Mracek, Z. 2010.   Does scavenging extend the host range of entomopathogenic nematodes (Nematoda: Steinernematidae)?  Journal of Invertebrate Pathology 104: 1-3

San-Blas, E. and Gowen, S.R. 2008.   Facultative scavenging as a survival strategy of entomopathogenic nematodes. International Journal for Parasitology 38: 85-91.

San-Blas, E. and Gowen, S.R. and Pembroke, B. 2008.  Scavenging or infection? Possible host choosing by entomopathogenic nematodes. Nematology 10: 251-259.

Resistance of Pulmonate slug, Limax pseudoflavus to slug-parasitic nematode by Ganpati Jagdale

Slugs and slug- parasitic nematodes

According to Rae et al. (2008), slug parasitic nematode Phasmarhabditis hermaphrodita was not effective against the pulmonate Slug species, Limax pseudoflavus because nematode infective juveniles were encapsulated and killed in the slug shells due to the immune response of slug, Limax pseudoflavus.

Read following papers about interaction between different slug species and the slug-parasitic nematode.

Grewal, S.K., Grewal, P.S. and Hammond, R.B. 2003.  Susceptibility of North American native and non-native slugs (Mollusca : Gastropoda) to Phasmarhabditis hermaphrodita (Nematoda : Rhabditidae).  Biocontrol Science and Technology  13: 119-125.

Nermut, J., Puza, V. and Mracek, Z. 2012.  The response of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae) and Steinernema feltiae (Nematoda: Steinernematidae) to different host-associated cues. Biological Control 61: 201-206.

Rae, R., Verdun, C., Grewal, P., Robertson, J.F. and Wilson, M.J.  2007.  Biological control of terrestrial molluscs using Phasmarhabditis hermaphrodita - progress and prospects. Pest Management Science 63: 1153-1164.

Rae, R.G., Robertson, J.F. and Wilson, M.J.  2006. The chemotactic response of Phasmarhabditis hermaphrodita (Nematoda : Rhabditida) to cues of Deroceras reticulatum (Mollusca : Gastropoda).  Nematology 8: 197-200.

Rae, R.G., Robertson, J.F. and Wilson, M.J.  2008. Susceptibility and immune response of Deroceras reticulatum, Milax gagates and Limax pseudoflavus exposed to the parasitic nematode Phasmarhabditis hermaphrodita. Journal of Invertebrate Pathology 97: 61-69.

Rae, R.G., Robertson, J.F. and Wilson, M.J.  2009. Chemoattraction and host preference of the gastropod parasitic nematode Phasmarhabditis hermaphrodita.  Journal of Parasitology 95: 517-526.

Ross, J.L., Ivanova, E.S., Sirgel, W.F., Malan, A.P. and Wilson, M.J.  Diversity and distribution of nematodes associated with terrestrial slugs in the Western Cape Province of South Africa. Journal of Helminthology 86: 215-221.

Small, R.W. and Bradford, C. 2008.  Behavioural responses of Phasmarhabditis hermaphrodita (Nematoda : Rhabditida) to mucus from potential hosts. Nematology 10: 591-598.

Insecticidal and antimicrobial compounds from Xenorhabdus budapestensis by Ganpati Jagdale

It has been reported that an entomopathogenic nematode, Steinernema bicornutum is effective against western flower thripsFrankliniella occidentalis (Ebssa et al., 2004) and western corn rootwormDiabrotica virgifera virgifera (Toepfer et al., 2005).  The infective juveniles of S. bicornutum carry symbiotic bacteria, Xenorhabdus budapestensis in their gut (Lengyel et al., 2005) and use them to kill their insect host.

Read More

New slug-parasitic nematodes from South Africa by Ganpati Jagdale

Slug-parasitic nematodes

Recently, three new species of slug-parasitic nematodes namely Angiostoma sp., Phasmarhabditis sp. SA1 and Phasmarhabditis sp. SA2 have been reported from Western Cape Province of South Africa (Ross at al., 2012). These slug-parasitic nematodes were recovered during a survey and identified using both morphological and molecular techniques.

Literature

Ross, J.L., Ivanova, E.S., Sirgel, W.F., Malan, A.P. and Wilson, M.J. 2012. Diversity and distribution of nematodes associated with terrestrial slugs in the Western Cape Province of South Africa. Journal of Helminthology 86: 215-221.

A new technique for identification of entomopathogenic nematodes and bacteria by Ganpati Jagdale

Entomopathogenic nematodes

Recently, San-Blas et al. (2011; 2012) demonstrated that Fourier transform mid-infrared spectroscopy with attenuated total reflection (FTIR/ATR) can be used for identification of entomopathogenic nematodes and their symbiotic bacteria.  Although this technique can make a distinction between different species of nematodes or symbiotic bacteria, its rapidity not known.

Read following papers for detail information on FTIR/ATR technique.

San-Blas, E., Cubillan, N., Guerra, M., Portillo, E. and Esteves, I. 2012. Characterization of Xenorhabdus and Photorhabdus bacteria by Fourier transform mid-infrared spectroscopy with attenuated total reflection (FT-IR/ATR). Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 93: 58-62.

San-Blas, E., Guerra, M., Portillo, E., Esteves, I., Cubillan, N. and Alvarado, Y. 2011.  ATR/FTIR characterization of Steinernema glaseri and Heterorhabditis indica. Vibrational Spectroscopy 57: 220-228.

Temperature influences the virulence of beneficial nematodes against mustard beetles by Ganpati Jagdale

Interaction between entomopathogenic nematodes and mustard beetles- Nematodeinformation It has been demonstrated that the virulence of Heterorhabditis indica and Heterorhabditis bacteriophora against the pupae of mustard beetle, Phaedon cochleariae was high at 30oC but the virulence of Steinernema carpocapsae and Steinernema feltiae was high at 25oC (Mahar et al., 2012).

Literature:

Mahar, A.N., Jan, N.D. and Mahar, A.Q. 2012.  Comparative effectiveness of entomopathogenic nematodes against the pupae of mustard beetle, Phaedon cochleariae F. (Chrysomelidae: Coleoptera). Pakistan Journal of Zoology 44: 517-523.

A report of new entomopathogenic nematode species from Florida by Ganpati Jagdale

Steinernema phyllophagae- Nematode Information

Last year a new species of entomopathogenic nematode was isolated by Nguyen and Buss (2011) from a white grub (Phyllophaga sp.) and based on morphological and molecular characteristics, it was named as Steinernema phyllophagae.

Literature

Nguyen, K.B., and Buss, E.A. 2011. Steinernema phyllophagae n. sp (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Florida, USA. Nematology 13: 425-442.

Interaction between strawberry crown moth and entomopathogenic nematodes by Ganpati Jagdale

Strawberry crown moth and entomopathogenic nematodes- Nematode information In a laboratory assay, when entomopathogenic nematodes including Steinernema carpocapsae and Heterorhabditis bacteriophora  are in direct contact, the can cause over 94% mortality of strawberry crown moth (Synanthedon bibionipennis) larvae  but when applied in the field, these nematodes are not in direct contact with insects therefore, they can cause up to 51% insect mortality (Bruck et al., 2008).

Bruck, D.J., Edwards, D.L. and Donahue, K.M.  2008.   Susceptibility of the strawberry crown moth (Lepidoptera : Sesiidae) to entomopathogenic nematodes. Journal of Economic Entomology 101: 251-255.

Control white grub with beneficial nematodes-Nematode information by Ganpati Jagdale

Efficacy of entomopathogenic nematodes against white grub, Holotrichia longipennis Today, I read a paper published in Journal of Pest Science by Khatri-Chhetri et al. (2011), who tested the efficacy of two newly isolated entomopathogenic nematode species from Nepal against white grub, Holotrichia longipennis.  This white grub is a very serious pest of many crops including black gram, cabbage, chilies, maize, millet, paddy soybean and tomato. 

Read More

A new entomopathogenic nematode species from South Africa by Ganpati Jagdale

An entomopathogenic nematode, Steinernema citrae- Nematode Information Galleria-baiting technique (Bedding and Akhurst, 1975), was used to isolate an entomopathogenic nematode from the soil collected from a citrus orchard in South Africa. Based on molecular characteristics, this new nematode was named as Steinernema citrae that  found to be closely related Stienernema feltiae group.

For detail information read following original paper

Bedding, R.A. and R.J. Akhurst. 1975. A simple technique for detection of insect parasitic rhabditid nematodes in soil. Nematologica. 21: 109-110.

Stokwe, N.F., Malan, A.P., Nguyen, K.B., Knoetze, R. and Tiedt, L. 2011. Steinernema citrae n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from South Africa. Nematology 13: 569-587.

A new entomopathogenic nematode Heterorhabditis atacamensis from Chile by Ganpati Jagdale

An entomopathogenic nematode, Heterorhabditis atacamensis- Nematode Information New entomopathogenic nematode species was found in the soil collected from Atacama Desert in Chile and was named after Atacama Desert as Heterorhabditis atacamensis. I like the way nematode taxonomists (Edgington et al., 2011) used individual morphological characteristics to differentiate this new species from other morphologically similar species of entomopathogenic nematodes. For example, these researchers showed that the H. atacamensis differed from H. marelatus, H. downesi and H. amazonensis based on position of hemizonid (a nematode sensory organ), position of excretory pore and female tail terminus shape, and number and position of genital papillae, respectively.  Using molecular techniques, Edgington et al. (2011) were also able to distinguish H. atacamensis from closely related entomopathogenic nematode species, H. safricana.

 Research Paper

Edgington, S., Buddie, A. G., Moore, D., France, A., Merino, L. and Hunt, D. J. 2011. Heterorhabditis atacamensis n. sp (Nematoda: Heterorhabditidae), a new entomopathogenic nematode from the Atacama Desert, Chile. Journal of Helminthology 85: 381-394.

New entomopathogenic nematode, Oscheius carolinensis found in vermicompost by Ganpati Jagdale

New entomopathogenic nematode, Oscheius carolinensis- Nematode Information Based on morphological and molecular characteristics, the nematode isolated from vermicompost using Galleria bait method (Bedding and Akhurst, 1975) has been described as a new entomopathogenic nematode species, Oscheius carolinensis (Ye et al., 2010).  This nematode is also pathogenic to cabbage butterfly (Pieris rapae) and mealworms (Tenebrio molitor).

 Literature

Bedding, R.A. and R.J. Akhurst. 1975. A simple technique for detection of insect parasitic rhabditid nematodes in soil. Nematologica. 21: 109-110.

Ye, W., Torres-Barragan, A. and Cardoza, Y.J. 2010. Oscheius carolinensis n. sp. (Nematoda: Rhabditidae), a potential entomopathogenic nematode from vermicompost. Nematology 12: 121-135.

Entomopathogenic nematodes kill their insect hosts within 24 hours by Ganpati Jagdale

Entomopathogenic Nematode Virulence- Nematode information It is well known fact that the infective juveniles of both Steinernema spp. and Heterorhabditis spp. enter their insect host through natural openings such as mouth, anus and spiracles and eventually reach in the insect body cavity.  As insects do not have a closed circulatory system like animals, their body cavity acts as an open circulatory system, which is filled with the blood that is technically called as hemolymph.

Read More

Entomopathogenic nematodes for the control of wireworm, Agriotes lineatus by Ganpati Jagdale

Entomopathogenic nematodes and Wireworms, Agriotes lineatus- Nematode Information Wireworm, Agriotes lineatus cause a tremendous loss to potato yields throughout the world. As biological control agent, entomopathogenic nematodes can serve as a safe alternative to chemical pesticides in managing wireworms and helping to increase potato yields.  It has been shown that the entomopathogenic nematode, Heterorhabditis bacteriophora can cause over 67% mortality of wireworm, Agriotes lineatus within three weeks of application (Ansari et al., 2009).

Literature

Ansari, M.A., Evans, M. and Butt, T.M. 2009. Identification of pathogenic strains of entomopathogenic nematodes and fungi for wireworm control. Crop Protection 28: 269-272.

Control sugarcane billbug, Sphenophorus levis with beneficial nematodes by Ganpati Jagdale

Entomopathogenic nematodes and the sugarcane billbug, Sphenophorus levis- Nematode Information Sugarcane is grown as an important cash crop in many countries but insect pests like the sugarcane billbug, Sphenophorus levis can cause a tremendous yield loss to this crop. Entomopathogenic nematodes have a great potential to use as a biological control agent against the sugarcane bill bugs. Recently, Giometti et al. (2011) reported that entomopathogenic nematodes including Steinernema brazilense strain IBCB n6 and three strains of Heterorhabditis sp. (IBCB n10, IBCB n24 and IBCB n44) were highly virulent causing over 60% mortality of adults of the sugarcane billbug. Sphenophorus levis.  

Publications:

Giometti, FHC, Leite, LG., Tavares, FM., Schmit, F.S., Batista, A. and Dell'Acqua, R. 2011.  Virulence of entomopathogenic nematodes (Nematoda: Rhabditida) against Sphenophorus levis (Coleoptera: Curculionidae).   Bragantia 70: 81-86.