entomopathogenic nematodes

Biological control of termites using entomopathogenic nematodes by Ganpati Jagdale

Biological control of termites using entomopathogenic nematodes Recently, it has been reported that the TP strain of an entomopathogenic nematode Steinernema riobrave have potential to control subterranean termites, a major insect pest of wood structures and wood products.

Read following papers on interaction between termites and entomopathogenic nematodes.

Yu, H., Gouge, D.H. and Shapiro-Ilan, D.I.  2010. A Novel Strain of Steinernema riobrave (Rhabditida: Steinernematidae) Possesses Superior Virulence to Subterranean Termites (Isoptera: Rhinotermitidae). Journal of Nematology 42: 91-95.

Yu, H., Gouge, D.H., Stock, S.P. and Baker, P.B. 2008. Development of entomopathogenic nematodes (Rhabditida: Steinernematidae; Heterorhabditidae) in desert subterranean termite Heterotermes aureus (Isoptera: Rhinotermitidae). Journal of Nematology. 40: 311-317.

Fungicidal activity of an antibacterial compound from entomopathogenic nematode symbiotic bacterium. by Ganpati Jagdale

Recently, Yang et al. (2011) tested a fungicidal activity of an antibacterial compound called Xenocoumacin 1 (Xcn1) from symbiotic bacterium, Xenorhabdus nematophila var. pekingensis against Potato late blight disease causing fungus, Phytophthora infestans.  These authors reported that this antibacterial compound strongly inhibits P. infestans mycelium growth and sporangia production. Read following papers on antibacterial compounds from entomopathogenic nematode symbiotic bacteria.

Akhurst, R.J. 1982.  Aantibiotic-activity of xenorhabdus spp, bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae . Journal of General Microbiology 128: 3061.

Bowen, D. 1998. Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280 : 2129.

Fang, X. L., Feng, J.T., Zhang, W. G., Wang, Y. H. and Zhang, X. 2010.  Optimization of growth medium and fermentation conditions for improved antibiotic activity of Xenorhabdus nematophila TB using a statistical approach.  African Journal of Biotechnology: 9: 8068-8077.

Gualtieri, M. 2009. Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. Journal of Antibiotics 62: 295.

Ji, D. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiology Letters 239: 241.

Li, J.X. 1995. Antimicrobial metabolites from a bacterial symbiont. Journal of Natural Products-Lloydia 58: 1081.

Li, J.X. 1997. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Canadian Journal of Microbiology 43: 770.

Mcinerney, B.V. 1991. Biologically-active metabolites from Xenorhabdus spp .1. dithiolopyrrolone derivatives with antibiotic-activity. Journal of Natural Products 54: 774.

Mcinerney, B.V. 1991. Biologically-active metabolites from Xenorhabdus spp.2. BENZOPYRAN-1-ONE derivatives with gastroprotective activity. Journal of Natural Products 54: 785.

Paul, V.J. 1981. Antibiotics in microbial ecology - isolation and structure assignment of several new anti-bacterial compounds from the insect-symbiotic bacteria Xenorhabdus Spp. Journal of Chemical Ecology 7: 589.

Wang, Y.H.  2008. Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization. Bioresource Technology 99: 1708.

Yang , X.F., Qiu, D.W., Yang, H.W., Liu, Z., Zeng, H.M. and Yuan, J.J.  2011.  Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans . World Journal of Microbiology and Biotechnology 27: 523-528.

Plants can call entomopathogenic nematodes to attack their insect enemies by Ganpati Jagdale

It has been demonstrated that entomopathogenic nematodes are attracted to herbivore-induced volatile organic compounds (VOCs) from plants when fed upon by their insect pests.   Thus these attracted nematodes can attack and kill the insects present in the vicinity of plants. Please read following papers for more information on VOCs released by plants and nematode attraction.

Ali, J.G., Alborn, H.T. and Stelinski, L.L. 2011. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. Journal of Ecology 99: 26-35.

Rasmann, S., Erwin, A.C., Halitschke, R. and Agrawal, A.A. 2011. Direct and indirect root defenses of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory.  Journal of Ecology 99: 16-25.

Compatibility of entomopathogenic nematodes with chemical pesticides by Ganpati Jagdale

Recently, Radova (2011) reported that the chemical pesticide fenpyroximate showed no adverse effect on virulence of entomopathogenic nematode Heterorhabditis bacteriophora but it reduced the virulence of Steinernema feltiae against the insect called mealworm Tenebrio molitor under laboratory conditions. For more information, read following papers on related topics

Garcia-Del-Pino, F. and Morton, A. 2010.  Synergistic effect of the herbicides glyphosate and MCPA on survival of entomopathogenic nematodes  Biocontrol Science and Technology.  20: 483-488.

Gutierrez, C., Campos-Herrera, R. and Jimenez, J. 2008.  Comparative study of the effect of selected agrochemical products on Steinernema feltiae (Rhabditida : Steinernematidae).  Biocontrol Science and Technology.  18: 101-108.

Negrisoli, A.S., Garcia, M.S., Negrisoli, C.R.C.B. 2010a.  Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions.  Crop Protection 29: 545-549.

Negrisoli, A.S., Garcia, M.S., Negrisoli, C.R.C.B., Bernardi, D. and da Silva, A. 2010b.  Efficacy of entomopathogenic nematodes (Nematoda: Rhabditida) and insecticide mixtures to control Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in corn. Crop Protection. 29: 677-683.

Radova, S.  2011.  Effects of selected pesticides on survival and virulence of two nematode species. Polish Journal of Environmental Studies.  20: 181-185.

Damage caused by Japanese beetles by Ganpati Jagdale

Biological control of Scarab larvae, Phyllophaga bicolor with entomopathogenic nematodes by Ganpati Jagdale

It has been reported that the heterorhabditis nematodes were more virulent than steinernematid nematodes against larvae Phyllophaga bicolor (Melo et al., 2010). Read following paper for more information.

Melo, E.L, Ortega, C.A., Gaigl, A. and Bellotti, A. 2010.  Evaluation of entomopathogenic nematodes for the management of Phyllophaga bicolor (Coleoptera: Melolonthidae). Revista Colombiana de Entomologia 36: 207-212.

Control of cockroaches using entomopathogenic nematodes by Ganpati Jagdale

It has been reported that entomopathogenic nematodes can be used as biological control agent to manage species of the American (Periplaneta americana) and the German (Blattella germanica) cockroaches. Read following paper for more information

Maketon, M., Hominchan, A. and Hotaka, D.  2010. Control of American cockroach (Periplaneta americana) and German cockroach (Blattella germanica) by entomopathogenic nematodes.  Revista Colombiana de Entomologia 36: 249-253.

Biological control of codling moth, Cydia pomonella with entomopathogenic nematodes by Ganpati Jagdale

It has been demonstrated that the Entomopathogenic nematodes including Steinernema carpocapsae and Steinernema feltiae have a potential to use as effective biological control agent against diapausing cocooned codling moth, Cydia pomonella larvae in miniature fruit bins. Read following paper for more information on efficacy of entomopathogenic nematodes against codling moth

Lacey, L.A., Neven, L.G., Headrick, H.L., Fritts, R. 2005.  Factors affecting entomopathogenic nematodes (Steinerneniatidae) for control of overwintering codling moth (Lepidoptera : Tortricidae) in fruit bins. Journal of Economic Entomology 98: 1863-1869.

Entomopatogenic nematodes are compatible with many insecticides by Ganpati Jagdale

Recently, Negrisoli et al. (2010) demonstrated that entomopathogenic nematodes including Heterorhabditis indica, Steinernema carpocapsae and Steinernema glaseri were found to be compatible with many insecticides including chlorpyrifos, deltamethrin, lufenuron, deltramethrin + triazophos, diflubenzuron, gamacyhalothrin, lambdacyhalothrin, spinosad, cypermethrin, triflumuron, and permethrin under laboratory conditions. Read following paper for more information compatibility of entomopathogenic nematodes with insecticides.

Negrisoli, A.S., Garcia, M.S., Negrisoli, C.R.C.B. 2010.  Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions.  Crop Protection 29: 545-549.

Biological control of fall army worm (Spodoptera frugiperda) an insect pest of corn by Ganpati Jagdale

Recently, Andalo, et al. (2010) demonstrated that the entomopathogenic nematodes Steinernema arenarium and Heterorhabditis sp. can kill over 80% larvae of fall army worm, Spodoptera frugiperda under both laboratory and greenhouse condition. Read following paper for the information on the effect of entomopathogenic nematodes on fall army worm.

Andalo, V., Santos, V., Moreira, G.F., Moreira, C.C. and Moino, A.  2010. Evaluation of entomopathogenic nematodes under laboratory and greenhouses conditions for the control of Spodoptera frugiperda Ciencia Rural  40: 1860-1866.

Quantitative real-time PCR techniques for detecting and quantifying entomopathogenic nematodes from the soil samples by Ganpati Jagdale

Recently, a quantitative real-time PCR (qPCR) technique has been developed by Campos-Herrera et al (2011) for detecting and quantifying entomopathogenic nematodes including Steinernema diaprepesi, Steinernema riobrave, Heterorhabditis indica, Heterorhabditis zealandica, Heterorhabditis floridensis and an undescribed species in the S. glaseri group from soil samples. Read following paper for a detail protocol of quantitative real-time PCR (qPCR) technique

Campos-Herrera, R., Johnson, E. G, El-Borai, F. E., Stuart, R. J., Graham, J. H. and Duncan, L. W.2011. Long-term stability of entomopathogenic nematode spatial patterns in soil as measured by sentinel insects and real-time PCR. Annals of Applied Biology    158: 55-68.

Control of noxious social insects with entomopathogenic nematodes by Ganpati Jagdale

Social insects including ants, termites and wasps can sting and cause harm to people. Termites and some species of ants are considered as serious pests of many crops and wooden structures (e. g. houses). Wasp insects including yellowjackets can be dangerous to people and domestic animals because of their ability to sting. Red imported fire ants (Solenopsis spp.) can cause serious injuries to people and animals. Insect-parasitic nematodes have a potential to use as biological control agents to kill these noxious social insects. It has been demonstrated that two insect-parasitic nematodes including Steinernema carpocapase, S. feltiae and Heterorhabditis bacteriophora can cause over 70% mortality of yellowjacket, Vespula pensylvanica under laboratory conditions (Gambino, 1984; Guzman, 1984). Steinernema carpocapsae can cause over 60% mortality of fire ants under laboratory conditions (Drees et al., 1992). It has been reported that S. feltiae when applied at the rate of 1,500,000 infective juveniles/nest can cause over 97% mortality of termites, Coptotermes formosanus and Reticulitermes speratus ( Wu et al., 1991). According to Wang et al (2002), both H. indica and H. bacteriophora were capable of infecting and killing termites, C. formosanus and R. flavipes in petri dish tests.

Please read following papers for more information on interaction between social insects and insect-parasitic nematodes.

Drees, B.M., Miller, R.W., Vinson, S.B. and Georgis, R. 1992.  Susceptibility and behavioral response of of red imported fire ant (Hymenoptera: formicidae) to selected entomogenous nematodes (Rhabditida: Steinernematidae & Heterorhabditidae). Journal of Economic Entomology. 85: 365-370.

Gambino, P. 1984. Susceptibility of western yellowjacket, Vespula pensylvanica to three species of three entomogenous nematodes. International Research Communications System Medical Science: Microbiology, Parasitology and Infectious Diseases. 12: 264.

Guzman, R.F. 1984.  Preliminary evaluation of the potential of Steinernema feltiae for controlling Vespula germanica. New Zealand Journal of Zoology. 11: 100.

Wang, C., Powell, J.E. and Nguyen, K. 2002.  Laboratory Evaluation of four entomopathogenic nematodes for control of subterranean termites (Isoptera: Rhinotermitidae). Environmental Entomology. 31: 381-387.

Wu, H.J., Wang, Z.N., Ou, C.F., Tsai, R.S. and Chow, Y.S. 1991.  Susceptibility of two Formosan termites to the entomogenous nematode Steinernema feltiae Filipjev.  Bulletin of the institute of Zoology, Academia Sinica. 30: 31-39.


Control of white grub Hoplia philanthus with entomopathogenic nematodes by Ganpati Jagdale

Efficacy of entomopathogenic nematodes including Heterorhabditis bacteriophora CLO51 strain, H. megidis VBM30 strain, H. indica, Steinernema scarabaei, S. feltiae, S. arenarium, S. carpocapsae Belgian strain, S. glaseri Belgian and NC strains was tested against larval pupal stages a white grub, Hoplia philanthus under laboratory and greenhouse conditions. Heterorhabditis bacteriophora, H. megidis and both strains of S. glaseri showed highest virulence against third stage larvae and pupae whereas Belgium strain of S. glaseri showed high virulence against second stage larvae of H. philanthus under laboratory conditions whereas H. bacteriophora, Belgium strains of S. glaseri and S. scarabaei showed high virulence to third stage than second stage larvae of white grubs under greenhouse conditions.

Reference:

Ansari, M.A., Adhikari, B.N., Ali, F. and Moens, M. 2008. Susceptibility of Hoplia philanthus (Coleoptera: Scarabaeidae) larvae and pupae to entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae). Biological Control. 47: 315-321.

A new entomopathogenic nematode species, Heterorhabditis sonorensis from Mexico by Ganpati Jagdale

Recently, a new entomopathogenic nematode species Heterorhabditis sonorensis has been reported from Mexico.  This nematode was recovered from nymphal stages of cicada Diceroprocta ornea collected from an asparagus field. Please read following research paper on techniques used for the identification of this new entomopathogenic nematode species.

Stock, S.P., Rivera-Orduno, B. and Flores-Lara, Y. 2009. Heterorhabditis sonorensis n. sp (Nematoda: Heterorhabditidae), a natural pathogen of the seasonal cicada Diceroprocta ornea (Walker) (Homoptera: Cicadidae) in the Sonoran desert. Journal of Invertebrate Pathology. 100: 175-184.

A report of a new entomopathogenic nematode species, Heterorhabditis gerrardi from Australia by Ganpati Jagdale

Recently, a new entomopathogenic nematode species Heterorhabditis gerrardi has been reported from Australia.  This nematode and its associated bacteria, Photorhabdus asymbiotica Kingscliff strain was identified using both morphological and molecular techniques. Please read following paper on procedures used for identification of this new entomopathogenic nematode species.

Plichta, K.L., Joyce, S.A., Clarke, D., Waterfield, N. and Stock, S.P. 2009.  Heterorhabditis gerrardi n. sp (Nematoda: Heterorhabditidae): the hidden host of Photorhabdus asymbiotica (Enterobacteriaceae: gamma-Proteobacteria). Journal of Helminthology.83: 309-320.

Control of fall armyworm, Spodoptera frugiperda with entomopathogenic nematodes by Ganpati Jagdale

The fall armyworm, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is considered as an economically important pest of corn in Brazil.  Entomopathogenic nematodes have a potential to include as biological control agents in the integrated pest management (IPM) programs to control the armyworm.  Recently, Negrisoli et al. (2010a) reported that several insecticides including Chlorpyrifos, Deltamethrin, Llufenuron, Deltramethrin + Triazophos, Diflubenzuron, Gamacyhalothrin, Lambdacyhalothrin, Spinosad, Chlorpyrifos, Cypermethrin, Triflumuron and Permethrin were compatible with the three species of entomopathogenic nematodes including Heterorhabditis indica, Steinernema carpocapsae and Steinernema glaseri under laboratory conditions.  Furthermore, it has been also reported that the efficacy of an entomopathogenic nematode, H. indica was enhanced against fall armyworm, Spodoptera frugiperda when mixed with an insecticide, Lufenuron (Negrisoli et al., 2010b). Read following research papers on compatibility of entomopathogenic nematodes with insecticides.

Negrisoli, A.S., Garcia, M.S. and Negrisoli, C.R.C.B. 2010a.  Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Protection. 29: 545-549

Negrisoli, A.S., Garcia, M.S., Negrisoli, C.R.C.B., Bernardi, D. and da Silva, A. 2010b.  Efficacy of entomopathogenic nematodes (Nematoda: Rhabditida) and insecticide mixtures to control Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in corn. Crop Protection. 29: 677-683.

Mode of action of entomopathogenic nematodes by Ganpati Jagdale

When the infective juveniles of entomopathogenic nematodes are applied to the soil surface in the fields or thatch layer on golf courses, they start searching for their insect hosts. Once insect larva has been located, the nematode infective juveniles penetrate into the larval body cavity via natural openings such as mouth, anus and spiracles. Infective juveniles of Heterorhabditis nematodes can also enter through the intersegmental membranes of the grub cuticle. Once in the body cavity, infective juveniles release symbiotic bacteria (Xenorhabdus spp. for Steinernematidae and Photorhabdus spp. for Heterorhabditidae) from their gut in insect blood. In the blood, multiplying nematode-bacterium complex causes septicemia and kill their insect host usually within 48 h after infection. Nematodes feed on multiplying bacteria, mature into adults, reproduce and then emerge as infective juveniles from the host cadaver to seek new larvae in the soil.

Entomopathogenic nematodes can be used for controlling pests of stored grains by Ganpati Jagdale

It has been demonstrated that the efficacy of entomopathogenic nematodes (Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema feltiae against various stored grain pests (Mediterranean flour moth, Ephestia kuehniella, lesser grain borer, Rhyzopertha dominica, rice weevil, Sitophilus oryzae and confused flour beetle, Tribolium confusum) of wheat (Triticum aestivum L.) varied with nematode dosages and temperature in the storage structures. Please read following papers for detailed information on the interaction between entomopathogenic nematodes and stored grain pests.

Athanassiou, C.G., Kavallieratos, N.C., Menti, H. and Karanastasi, E. 2010.  Mortality of four stored product pests in stored wheat when exposed to doses of three entomopathogenic nematodes.  Journal of Economic Entomology. 103: 977-984.

Athanassiou, C.G., Palyvos, N.E. and Kakoull-Duarte, T. 2008.  Insecticidal effect of Steinernema feltiae (Filipjev) (Nematoda : Steinernematidae) against Tribolium confusum du Val (Coleoptera : Tenebrionidae) and Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) in stored wheat  Journal of Stored Products Research. 44: 52-57.

Mbata, G.N., and Shapiro-Ilan, D.I. 2005.  Laboratory evaluation of virulence of heterorhabditid nematodes to Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Environmental Entomology. 34: 676 – 682.

Ramos-Rodríguez, O., Campbell, J. F. and Ramaswamy, S. 2006.  Pathogenicity of three species of entomopathogenic nematodes to some major stored- product insect pest. Journal of Stored Product Research 42: 241 – 252.

Ramos-Rodríguez,O., Campbell, J. F. and Ramaswamy, S. 2007.  Efficacy of the   entomopathogenic nematodes Steinernema riborave against the stored-product pests Tribolium castaneum and Plodia interpunctella. Biological Control 40:15 -21.

Tradan, S., Vidric, M. and Valic, N. 2006.  Activity of four entomopathogenic nematodes against young adult of Sitophilus granarious (Coleptera: Curculionidae ) and Oryzophilus surinamensis ( Coleoptera: Silvanidae ) under laboratory condition. Plant Disease and Protection. 113: 168 – 173.

Do you know that the queens of red imported fire ants can be susceptible to entomopathogenic nematodes? by Ganpati Jagdale

As we know that the red imported fire ants (Solenopsis invicta Buren) are most notorious and difficult to control.  These ants are considered as a major agricultural and urban pest and they can be medically and environmentally harmful.  Red imported fire ants generally invade home lawns, school yards, athletic fields, golf courses and parks.  Natural enemies including microsporidian protozoan (Thelohania solenopsae) the fungus (Beauveria bassiana),  South African parasitoid flies (Pseudacteon tricuspis and Pseudacteon curvatus) and entomopathogenic nematodes have a potential to use as a biological control agents to kill red imported fire ants. Recently, it has been reported that the infective juveniles of two entomopathogenic nematode species including Steinernema carpocapsae All and S. scapterisci can infect the queens of the red imported fire ant, Solenopsis invicta under laboratory conditions.  Both nematodes can cause up to  100% mortality of fire ant queens 9 days after their exposure. 

For correct dosages of nematodes and their efficacy, please read the paper listed below.

Zhang, L.K., Zhang, P.B., Cao, L. and Han, R.C. 2010.  Susceptibility of red imported fire ant queens to the entomopathogenic nematodes Steinernema carpocapsae All and S. scapterisci. Sociobiology. 55: 519-526.

Kill cereal leaf beetles, Oulema melanopus with entomopathogenic nematodes by Ganpati Jagdale

Recently, it has been demonstrated that the entomopathogenic nematodes including Steinernema feltiae strain B30, S. carpocapsae strain C101, and Heterorhabditis bacteriophora strain D54 have a potential to use as biological control agents against cereal leaf beetles (Oulema melanopus), which is a most common pest of many cereal crops including barley, corn, oats, wheat, rye, millet and rice.

For more information on interaction between entomopathogenic nematodes and cereal leaf beetles read following research paper.

Laznik, Z., Toth, I., Lakatos, T., Vidrih, M. and Trdan, S. 2010.  Oulema melanopus (L.) (Coleoptera: Chrysomelidae) adults are susceptible to entomopathogenic nematodes (Rhabditida) attack: results from a laboratory study. Journal of Plant Diseases and Protection. 117: 30-32.