Control of white grub Hoplia philanthus with entomopathogenic nematodes by Ganpati Jagdale

Efficacy of entomopathogenic nematodes including Heterorhabditis bacteriophora CLO51 strain, H. megidis VBM30 strain, H. indica, Steinernema scarabaei, S. feltiae, S. arenarium, S. carpocapsae Belgian strain, S. glaseri Belgian and NC strains was tested against larval pupal stages a white grub, Hoplia philanthus under laboratory and greenhouse conditions. Heterorhabditis bacteriophora, H. megidis and both strains of S. glaseri showed highest virulence against third stage larvae and pupae whereas Belgium strain of S. glaseri showed high virulence against second stage larvae of H. philanthus under laboratory conditions whereas H. bacteriophora, Belgium strains of S. glaseri and S. scarabaei showed high virulence to third stage than second stage larvae of white grubs under greenhouse conditions.

Reference:

Ansari, M.A., Adhikari, B.N., Ali, F. and Moens, M. 2008. Susceptibility of Hoplia philanthus (Coleoptera: Scarabaeidae) larvae and pupae to entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae). Biological Control. 47: 315-321.

Use entomopathogenic nematodes to control western corn rootworm by Ganpati Jagdale

Efficacies of two biological control agents including entomopathogenic fungus (Metarhizium anisopliae) and insect-parasitic nematode (Heterorhabditis bacteriophora) against western corn rootworm, Diabrotica virgifera virgifera was compared with two insecticides including Tefluthrin (synthetic pyrethroid compound) and clothianidin (neonicotinoid compound).  According to Pilz et al (2009), insect-parasitic nematode,  H. bacteriophora was as effective as both insecticides in reducing population of the western corn rootworm. Reference:

Pilz, C., Keller, S., Kuhlmann, U. and Toepfer, S. 2009.  Comparative efficacy assessment of fungi, nematodes and insecticides to control western corn rootworm larvae in maize.  Biocontrol. 54: 671-684.

Efficacy of Heterorhabditis indica and Steinernema minuta against the Japanese beetle by Ganpati Jagdale

Efficacy of four new entomopathogenic nematode strains including Heterorhabditis indica strains MP17 and MP111, Heterorhabditis sp. strain MP68 and Steinernema  minuta strain MP10 from Thailand was tested against the second  instar larva of the Japanese beetle, Popillia japonica in laboratory bioassays. This study demonstrated that the strains of both H. indica and Heterorhabditis spp. were more efficacious against P. japonica that the strain of Steinernema  minuta. However, when comparisons were made among the strains of Heterorhabditis nematodes, MP111 strain of H. indica was the most efficacious against the second instar larva of Japanese beetle . Read following paper on the virulence of entomopathogenic nematodes from Thailand on Japanese beetle.

Maneesakorn, P., An, R., Grewal, P.S.and Chandrapatya, A. 2010. Virulence of our new strains of entomopathogenic nematodes from Thailand against second instar larva of the Japanese Beetle, Popillia japonica (Coleoptera: Scarabaeidae). Thai Journal of Agricultural Science.43: 61-66.

A new entomopathogenic nematode species, Heterorhabditis sonorensis from Mexico by Ganpati Jagdale

Recently, a new entomopathogenic nematode species Heterorhabditis sonorensis has been reported from Mexico.  This nematode was recovered from nymphal stages of cicada Diceroprocta ornea collected from an asparagus field. Please read following research paper on techniques used for the identification of this new entomopathogenic nematode species.

Stock, S.P., Rivera-Orduno, B. and Flores-Lara, Y. 2009. Heterorhabditis sonorensis n. sp (Nematoda: Heterorhabditidae), a natural pathogen of the seasonal cicada Diceroprocta ornea (Walker) (Homoptera: Cicadidae) in the Sonoran desert. Journal of Invertebrate Pathology. 100: 175-184.

A report of a new entomopathogenic nematode species, Heterorhabditis gerrardi from Australia by Ganpati Jagdale

Recently, a new entomopathogenic nematode species Heterorhabditis gerrardi has been reported from Australia.  This nematode and its associated bacteria, Photorhabdus asymbiotica Kingscliff strain was identified using both morphological and molecular techniques. Please read following paper on procedures used for identification of this new entomopathogenic nematode species.

Plichta, K.L., Joyce, S.A., Clarke, D., Waterfield, N. and Stock, S.P. 2009.  Heterorhabditis gerrardi n. sp (Nematoda: Heterorhabditidae): the hidden host of Photorhabdus asymbiotica (Enterobacteriaceae: gamma-Proteobacteria). Journal of Helminthology.83: 309-320.

A new species of an entomopathogenic nematode, Heterorhabditis brevicaudis from Taiwan by Ganpati Jagdale

A new species of Heterorhabditis brevicaudis and its symbiotic bacteria, Photorhabdus luminescens subsp. akhurstii has been reported for the first time from Taiwan.  This nematode was isolated from sandy coastal soils in moist bamboo forest. Read following paper for more information on the methods used for identification of nematodes and its associated bacteria.

Hsieh, F.C., Tzeng, C.Y., Tseng, J.T., Tsai, Y.S., Meng, M.H. and Kao, S.S. 2009.  Isolation and Characterization of the Native Entomopathogenic Nematode, Heterorhabditis brevicaudis, and its Symbiotic Bacteria from Taiwan.  Current Microbiology. 58: 564-570.

Control of fall armyworm, Spodoptera frugiperda with entomopathogenic nematodes by Ganpati Jagdale

The fall armyworm, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is considered as an economically important pest of corn in Brazil.  Entomopathogenic nematodes have a potential to include as biological control agents in the integrated pest management (IPM) programs to control the armyworm.  Recently, Negrisoli et al. (2010a) reported that several insecticides including Chlorpyrifos, Deltamethrin, Llufenuron, Deltramethrin + Triazophos, Diflubenzuron, Gamacyhalothrin, Lambdacyhalothrin, Spinosad, Chlorpyrifos, Cypermethrin, Triflumuron and Permethrin were compatible with the three species of entomopathogenic nematodes including Heterorhabditis indica, Steinernema carpocapsae and Steinernema glaseri under laboratory conditions.  Furthermore, it has been also reported that the efficacy of an entomopathogenic nematode, H. indica was enhanced against fall armyworm, Spodoptera frugiperda when mixed with an insecticide, Lufenuron (Negrisoli et al., 2010b). Read following research papers on compatibility of entomopathogenic nematodes with insecticides.

Negrisoli, A.S., Garcia, M.S. and Negrisoli, C.R.C.B. 2010a.  Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Protection. 29: 545-549

Negrisoli, A.S., Garcia, M.S., Negrisoli, C.R.C.B., Bernardi, D. and da Silva, A. 2010b.  Efficacy of entomopathogenic nematodes (Nematoda: Rhabditida) and insecticide mixtures to control Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in corn. Crop Protection. 29: 677-683.

Control the annual bluegrass weevil, Listronotus maculicollis with entomopathogenic nematodes by Ganpati Jagdale

Recently, McGraw et al (2010) demonstrated that field application of three species of entomopathogenic nematodes (Steinernema carpocapsae, S. feltiae and Heterorhabditis bacteriophora) at rate of 2.5 billion nematodes/hectare reduced over 69% population of first generation late instars of the annual bluegrass weevil, Listronotus maculicollis. For more information on the interaction between entomopathogenic nematodes and the annual bluegrass weevil read following literature.

Hello, World!

McGraw, B.A. and Koppenhofer A.M. 2008.  Evaluation of two endemic and five commercial entomopathogenic nematode species (Rhabditida : Heterorhabditidae and Steinernematidae) against annual bluegrass weevil (Coleoptera : Curculionidae) larvae and adults. Biological Control. 46: 467-475.

McGraw, B.A. and Koppenhofer A.M. 2009.  Population dynamics and interactions between endemic entomopathogenic nematodes and annual bluegrass weevil populations in golf course turfgrass. Applied Soil Ecology. 41: 77-89.

McGraw, B.A., Vittum, P.J., Cowles, R.S. and Koppenhofer A.M. 2010.  Field evaluation of entomopathogenic nematodes for the biological control of the annual bluegrass weevil, Listronotus maculicollis (Coleoptera: Curculionidae), in golf course turfgrass. Biocontrol Science and Technology. 20: 149-163.

Control of the black vine weevil Otiorhynchus sulcatus infesting strawberry fields by Ganpati Jagdale

It has been reported that entompathogenic nematodes including Heterorhabditis megidis and Steinernema kraussei are effective against the black vine weevil Otiorhynchus sulcatus infesting strawberry fields (Haukeland and Lola-Luz, 2010).  It has been suggested that the soil type and soil temperature plays a significant role in efficacy of these nematodes against the black vine weevil.  It is also noted that H. megidis performs better at soil temperatures above 10oC and S. kraussei at below 10oC. References:

Haukeland, S. and Lola-Luz, T. 2010.  Efficacy of the entomopathogenic nematodes Steinernema kraussei and Heterorhabditis megidis against the black vine weevil Otiorhynchus sulcatus in open field-grown strawberry plants. Agricultural and Forest Entomology.12363-369

Control of the western corn rootworm with Heterorhabditis bacteriophora by Ganpati Jagdale

It has been demonstrated that that application of an entomopathogenic nematode Heterorhabditis bacteriophora can reduce the population of the western corn rootworm Diabrotica virgifera virgifera in the field and thus reducing the damage caused by this insect pest to corn roots and preventing subsequent lodging of plants (Stefan et al., 2010). References:

Stefan, T., Ibolya, H.Z., Ehlers, R.U., Peters, A. and Kuhlmann, U. 2010.  The effect of application techniques on field-scale efficacy: can the use of entomopathogenic nematodes reduce damage by western corn rootworm larvae? Agricultural and Forest Entomology. 12: 389-402.

Entomopathogenic nematodes can protect citrus fruits from the damage caused by the mediterranean fruit fly by Ganpati Jagdale

The data presented by Abd-Elgawad et al., at the 49th Annual meeting of the Society of Nematlogists held from July 11-14, 2010 in Boise, Idaho clearly demonstrated that the application of two species of entomopathogenic nematodes (Steinernema riobrave and Heterorhabditis bacteriophora) in the soil significantly reduced the emergence of adults Mediterranean fruit fly, Ceratitis capitata when  compared with the untreated control.

Research papers presented on entomopathogenic nematodes at 49th annual meeting of the Society of Nematologists by Ganpati Jagdale

Recently, 49th annual meeting of the Society of Nematologists was held from July 11- 14, 2010 in Boise, Idaho.  This meeting was a great success and was attended by over 200 participants from all over the world. A total of 5 symposiums entitled "Potato Nematology (Convener: David Chitwood), Expanding Frontiers of Nematology (Conveners: Parwinder Grewal and Charles Opperman), Education (Convener: TJ Bliss), Nematode-Microbe Interactions (Conveners: Amy Treonis and Parwinder Grewal) and Frontiers in Insect Nematology (Conveners: David I Shapiro-Ilan and Ganpati Jagdale)" were organised in this meeting. Also, two workshops namely "Molecular Ecology (Conveners: Raquel Campos-Herrera and Byron J. Adams) and Industry (Conveners: Tom Hewlett) were organised to cover topics regarding molecular basis for the nematode- environment interactions and various technologies in nematode research, respectively. There were 7 contributed paper sessions covering various nematode research topics including host-parasite interactions (Convener: Russ Ingham), management 1 (Convener: Maurice Moens) & 2 (Convener: Shabeg Briar), registance and genetics (Convener: Richard Davis), biological control (Convener: Kris Lambert), ecology/evolution/behavior (Convener: George Bird) and variou topics (Convener: Robin Giblin-Davis). Following is the list of papers presented on entomopathogenic nematodes at the meeting

Following papers were presented in the symposium on entomopathogenic nematodes (Frontiers in Insect Nematology).

Abd-Elgawad, Mahfouz M. M., A.S. Abdel-Razek, and A.E. Abd El-Wahab. 2010. Protection of citrus fruits against the medfly using entomopathogenic nematodes and fungi.

Bal, Harit K., R. A. J. Taylor, and P.S. Grewal. 2010. Do ambusher and cruiser entomopathogenic nematodes disperse differently in soil in the absence of hosts?

Campos-Herrera, Raquel, E. Pathak, R.J., Stuart, F.E. El-Borai, C. Gutiérrez, J.H. Graham, and L.W. Duncan. 2010.  Entomopathogenic nematode ecology as a basis for their use in pest management.

Dolinski, Claudia 2010.  Recent advancements in applied entomopathogenic Nematology in South America.

Grewal, Parwinder S., and R. An. 2010.  Partnership between entomopathogenic nematodes and bacteria.

Holmes, Len D. and F.L. Inman III. 2010.  Learning to raise the entomopathogenic nematode Heterorhabditis bacteriophora in submerged culture.

Moens, Maurice and R.-U. Ehlers. 2010.   The latest developments in applied entomopathogenic nematology in Europe.

Pathak, Ekta, R. Campos-Herrera, R.J. Stuart, F.E. El-Borai, A.W. Schumann, J.H. Graham, and L.W. Duncan. 2010.  The impact of a new tactic to manage a citrus disease on biological control of a citrus pest by entomopathogenic nematodes.

Shapiro-Ilan, David I., and Lawrence A. Lacey. 2010.  Novel entomopathogenic nematode formulations and targets in north american orchards.

Entomopathogenic nematodes and insect parasitoids can work together to kill insect pests by Ganpati Jagdale

In a laboratory study, recently it has been demonstrated that the combined application of an entomopathogenic nematode,  Heterorhabditis indica and an insect parasitoid, Habrobracon hebetor can enhance the mortality of Indianmeal moth, Plodia interpunctella.

Please read following literature for more information on compatibility of entomopathogenic nematodes and insect parasitoides

Mbata, G.N. and Shapiro-Ilan, D.I. 2010 Compatibility of Heterorhabditis indica (Rhabditida: Heterorhabditidae) and Habrobracon hebetor (Hymenoptera: Braconidae) for biological control of Plodia interpunctella (Lepidoptera: Pyralidae). Biological Control. 54: 75-82.

Management of small hive beetles with insect-parasitic nematodes by Ganpati Jagdale

Entomopathogenic nematodes including Steinernema riobrave and Heterorhabditis indica were evalusted against a small hive beetle Aethina tumida Murray (Coleoptera: Nitidulidae) in the field. According to Ellis et al. (2010) both nematode species caused over 76% mortality of hive beetles. Shapiro-Ilan et al. (2010) tested efficacy of H. indica and Steinernema carpocapsae against hive beetles and demonstrated that both nematode species when applied through infected host cadavers can cause up to 78% control in hive beetles. This suggests that entomopathogenic nematodes have a potential to use as biological control agents against hive beetles.

Read following papers for detail information on effect of entomopathogenic nematodes on the small hive beetles.

Ellis, J.D., Spiewok, S., Delaplane, K.S., Buchholz, S., Neumann, P. and Tedders, W.L. 2010.  Susceptibility of Aethina tumida (Coleoptera: Nitidulidae) larvae and pupae to entomopathogenic nematodes. Journal of Economic Entomology. 103: 1-9.

Shapiro-Ilan, D.I., Morales-Ramos, J.A., Rojas, M.G. and Tedders, W.L. 2010.  Effects of a novel entomopathogenic nematode-infected host formulation on cadaver integrity, nematode yield, and suppression of Diaprepes abbreviatus and Aethina tumida. Journal of Invertebrate Pathology. 103: 103-108.

Mode of action of entomopathogenic nematodes by Ganpati Jagdale

When the infective juveniles of entomopathogenic nematodes are applied to the soil surface in the fields or thatch layer on golf courses, they start searching for their insect hosts. Once insect larva has been located, the nematode infective juveniles penetrate into the larval body cavity via natural openings such as mouth, anus and spiracles. Infective juveniles of Heterorhabditis nematodes can also enter through the intersegmental membranes of the grub cuticle. Once in the body cavity, infective juveniles release symbiotic bacteria (Xenorhabdus spp. for Steinernematidae and Photorhabdus spp. for Heterorhabditidae) from their gut in insect blood. In the blood, multiplying nematode-bacterium complex causes septicemia and kill their insect host usually within 48 h after infection. Nematodes feed on multiplying bacteria, mature into adults, reproduce and then emerge as infective juveniles from the host cadaver to seek new larvae in the soil.

Control of annual bluegrass weevil, Listronotus maculicollis with entomopathogenic nematodes by Ganpati Jagdale

It has been reported that the entomopathogenic nematodes including Steinernema carpocapsae, S. feltiae and Heterorhabditis bacteriophora when applied at rate of 2.5 billion infective juveniles/ha can cause 69- 94% mortality of first generation late instars of annual bluegrass weevil, Listronotus maculicollis. Of the 3 species of entomopathogenic nematodes, S. feltiae showed higher virulence against annual bluegrass weevil than the other two nematode species (see McGraw et al., 2010).

Read following research papers for more information on interaction between entomopathogenic nematodes and annual bluegrass weevil, L. maculicollis.

McGraw, B.A., Vittumb, P.J. Cowlesc, R.S.and Koppenhoumlfera, A.M. 2010.  Field evaluation of entomopathogenic nematodes for the biological control of the annual bluegrass weevil, Listronotus maculicollis (Coleoptera: Curculionidae), in golf course turfgrass. Journal Biocontrol Science and Technology. 20: 149 - 163.

Entomopathogenic nematodes can be used for controlling pests of stored grains by Ganpati Jagdale

It has been demonstrated that the efficacy of entomopathogenic nematodes (Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema feltiae against various stored grain pests (Mediterranean flour moth, Ephestia kuehniella, lesser grain borer, Rhyzopertha dominica, rice weevil, Sitophilus oryzae and confused flour beetle, Tribolium confusum) of wheat (Triticum aestivum L.) varied with nematode dosages and temperature in the storage structures. Please read following papers for detailed information on the interaction between entomopathogenic nematodes and stored grain pests.

Athanassiou, C.G., Kavallieratos, N.C., Menti, H. and Karanastasi, E. 2010.  Mortality of four stored product pests in stored wheat when exposed to doses of three entomopathogenic nematodes.  Journal of Economic Entomology. 103: 977-984.

Athanassiou, C.G., Palyvos, N.E. and Kakoull-Duarte, T. 2008.  Insecticidal effect of Steinernema feltiae (Filipjev) (Nematoda : Steinernematidae) against Tribolium confusum du Val (Coleoptera : Tenebrionidae) and Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) in stored wheat  Journal of Stored Products Research. 44: 52-57.

Mbata, G.N., and Shapiro-Ilan, D.I. 2005.  Laboratory evaluation of virulence of heterorhabditid nematodes to Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Environmental Entomology. 34: 676 – 682.

Ramos-Rodríguez, O., Campbell, J. F. and Ramaswamy, S. 2006.  Pathogenicity of three species of entomopathogenic nematodes to some major stored- product insect pest. Journal of Stored Product Research 42: 241 – 252.

Ramos-Rodríguez,O., Campbell, J. F. and Ramaswamy, S. 2007.  Efficacy of the   entomopathogenic nematodes Steinernema riborave against the stored-product pests Tribolium castaneum and Plodia interpunctella. Biological Control 40:15 -21.

Tradan, S., Vidric, M. and Valic, N. 2006.  Activity of four entomopathogenic nematodes against young adult of Sitophilus granarious (Coleptera: Curculionidae ) and Oryzophilus surinamensis ( Coleoptera: Silvanidae ) under laboratory condition. Plant Disease and Protection. 113: 168 – 173.

Control Rhipicephalus (Boophilus) microplus with an entomopathogenic nematode Steinernema glaseri by Ganpati Jagdale

It has been demonstrated that the entomopathogenic nematode Steinernema glaseri CCA strain can infect engorged Rhipicephalus ( Boophilus) microplus female ticks within two hours of exposure.  However, nematodes can cause over 90% mortality of ticks when they are in contact with the ticks for 24 hours. Read following papers for more information on interaction between entomopathogenic nematodes and ticks.

de Carvalho, L.B., Furlong, J., Prata, M.C.D., dos Reis, E.S., Batista, E.S.D., Faza, A.P. and Leite R.C. 2010.  Evaluation in vitro of the infection times of engorged females of Rhipicephalus (Boophilus) microplus by the entomopathogenic nematode Steinernema glaseri CCA strain. Ciencia Rural. 40: 939-943.

Freitas-Ribeiro G.M., Furlong, J., Vasconcelos, V.O., Dolinski, C. and Loures-Ribeiro, A. 2005.  Analysis of biological parameters of Boophilus microplus Canestrini, 1887 exposed to entomopathogenic nematodes Steinernema carpocapsae Santa Rosa and all strains (Steinernema : Rhabditida). Brazilian Archives of Biology and Technology. 48: 911-919.

Kocan, K.M., Pidherney, M.S., Blouin, E.F., Claypool, P.L., Samish, M. and Glazer, I. 1998.  Interaction of entomopathogenic nematodes (Steinernematidae) with selected species of ixodid ticks (Acari : Ixodidae). Journal of Medical Entomology. 35: 514-520.

Monteiro, C.M.D., Prata, M.C.D., Furlong, J., Faza, A.P., Mendes, A.S., Andalo, V. and Moino, A.2010.  Heterorhabditis amazonensis (Rhabditidae: Heterorhabditidae), strain RSC-5, for biological control of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitology Research. 106: 821-826.

Reis-Menini, C.M.R., Prata, M.C.A., Furlong, J. and Silva, E.R. 2008.  Compatibility between the entomopathogenic nematode Steinernema glaseri (Rhabditida : Steinernematidae) and an acaricide in the control of Rhipicephalus (Boophilus) microplus (Acari : Ixodidae). Parasitology Research. 103: 1391-1396.

Do you know that the queens of red imported fire ants can be susceptible to entomopathogenic nematodes? by Ganpati Jagdale

As we know that the red imported fire ants (Solenopsis invicta Buren) are most notorious and difficult to control.  These ants are considered as a major agricultural and urban pest and they can be medically and environmentally harmful.  Red imported fire ants generally invade home lawns, school yards, athletic fields, golf courses and parks.  Natural enemies including microsporidian protozoan (Thelohania solenopsae) the fungus (Beauveria bassiana),  South African parasitoid flies (Pseudacteon tricuspis and Pseudacteon curvatus) and entomopathogenic nematodes have a potential to use as a biological control agents to kill red imported fire ants. Recently, it has been reported that the infective juveniles of two entomopathogenic nematode species including Steinernema carpocapsae All and S. scapterisci can infect the queens of the red imported fire ant, Solenopsis invicta under laboratory conditions.  Both nematodes can cause up to  100% mortality of fire ant queens 9 days after their exposure. 

For correct dosages of nematodes and their efficacy, please read the paper listed below.

Zhang, L.K., Zhang, P.B., Cao, L. and Han, R.C. 2010.  Susceptibility of red imported fire ant queens to the entomopathogenic nematodes Steinernema carpocapsae All and S. scapterisci. Sociobiology. 55: 519-526.

Biological control of filbertworm, Cydia latiferreana with entomopathogenic nematodes by Ganpati Jagdale

Filbertworm, Cydia latiferreana is considered as an economically important insect pest of hazelnuts, Corylus avellana in North America.  Three entomopathogenic nematode species including Heterorhabditis marelatus Pt. Reyes strain, Steinernema carpocapsae All strain and Steinernema kraussei L137 strain have been tested as biological control agents against filbertworm under both laboratory and field condition (Chambers et al., 2010; Bruck and Walton, 2007). These studies showed that these nematodes can cause about 73–100% mortality of filbertworms (Bruck and Walton, 2007) and can be used to manage overwintering worms on the hazelnut orchard floor (Chambers et al., 2010).

Read following literature for information on the interaction between entomopathogenic nematodes and filbertworm.

Bruck, D.J. and Walton, V.M. 2007.  Susceptibility of the filbertworm (Cydia latiferreana, Lepidoptera:Tortricidae) and filbert weevil (Curculio occidentalis, Coleoptera: Curculionidae) to entomopathogenic nematodes. Journal of Invertebrate Pathology. 96: 93–96.

Chambers, U. Bruck, D.J., Olsen, J. and Walton, V.M. 2010.  Control of overwintering filbertworm (Lepidoptera: Tortricidae) larvae with Steinernema carpocapsae. Journal of Economic Entomology. 103: 416-422.